The ability to express an idea is as important as the idea itself.

Bernard Baruch

Personal

Education

Publications

Awards

Employment

Hobbies

 

Last updated: 2017-09-11

Peer Reviewed Papers 

[42]

Florentin A., Agam N.  2017.  Estimating non-rainfall-water-inputs-derived latent heat flux with turbulence-based methods. Agricultural and Forest Meteorology, 247, 533-540.

[41]

Reshef N., Walbaum N., Agam N., Fait A. 2017. Sunlight modulates fruit metabolic profile and shapes the spatial pattern of compound accumulation within the grape cluster. Frontiers in Plant Science, 8, doi: 10.3389/fpls.2017.00070.

[40]

Kool D., Heitman J.L., Lazarovitch N., Agam N., Sauer T.J., Ben-Gal A. 2016. In-situ thermistor calibration for improved measurement of soil temperature gradients. Soil Science Society of America Journal, 80, 1514-1519.

[39]

Song L.S., Kustas W.P., Liu S.M., Colaizzi P.D., Nieto H., Xu Z.W., Ma Y.F., Li M.S., Xu T.R., Agam N., Tolk J.A., Evett S.R. 2016. Applications of a thermal-based two-source energy balance model using Priestley-Taylor approach for surface temperature partitioning under advective conditions. Journal of Hydrology, 540, 574-587.

[38]

Agam N., Leake L.S., Berliner P.R. 2016. Modeling solar radiation inside a trench towards optimizing micro-catchment water harvesting systems. Agricultural and Forest Meteorology, 221, 152–163.

[37]

Colaizzi P.D., Agam N., Tolk J.A., Evett S.R., Howell T.A. Sr., O’Shaughnessy S.A., Gowda P.H., Kustas W.P., Anderson M.C. 2016. Advances in the two-source energy balance model: partitioning of evaporation and transpiration for row crops. Transactions of the American Society of Agricultural and Biological Engineers, 59, 181-197.

[36]

Bustan A., Dag A., Yermiyahu U., Erel R., Presnov E., Agam N., Kool D., Iwema J., Zipori I., Ben-Gal A. 2016. Fruit load governs transpiration of olive trees. Tree Physiology, 00,1-12.

[35]

Kool D., Kustas; W.P., Ben-Gal A., Lazarovitch N., Heitman J.L., Sauer T.J., Agam N. 2016. Energy and evapotranspiration partitioning in a desert vineyard. Agricultural and Forest Meteorology, 218-219, 277-287.

[34]

Colaizzi P.D., Evett S.R., Agam N., Schwartz R.C., Kustas W.P., Cosh M.H., McKee L. 2016. Soil Heat Flux Calculation for Sunlit and Shaded Surfaces under Row Crops: 2. Model Test. Agricultural and Forest Meteorology, 216, 129-140.

[33]

Colaizzi P.D., Evett S.R., Agam N., Schwartz R.C., Kustas W.P., Cosh M.H., McKee L. 2016. Soil Heat Flux Calculation for Sunlit and Shaded Surfaces under Row Crops: 1. Model Development and Sensitivity Analysis. Agricultural and Forest Meteorology, 216, 115-128.

[32]

Kustas W.P., Alfieri J.D., Agam N., Evett S.R. 2015. Quantifying variability in field‑scale evapotranspiration measurements in an irrigated agricultural region under advection. Irrigation Science, doi:10.1007/s00271-015-0469-1.

[31]

Rozenstein O., Agam N., Serio C., Masiello G., Venafra S., Achal S., Puckrin E., Karnieli A.  2015. Diurnal emissivity dynamics in bare versus biocrusted sand dunes. Science of the Total Environment, 506-507, 422–429.

[30]

Kool D., Ben-Gal A., Agam N., Šimůnek J., Heitman J.L., Sauer T.J., Lazarovitch N. 2014. Spatial and diurnal below canopy evaporation in a desert vineyard: measurements and modeling. Water Resources Research, 50, doi:10.1002/2014WR015409.

[29]

Colaizzi P.D., Agam N., Tolk J.A., Evett S.R., Howell T.A., Gowda P.H., O’Shaughnessy S.A., Kustas W.P., and Anderson M.C.  2014. Two source energy balance model to calculate E, T, and ET: Comparison of Priestley–Taylor and Penman–Monteith formulations and two time scaling methods. Transactions of American Society of Agricultural and Biological Engineers, 57, 479-498.

[28]

Holland S., Howard A., Heitman J.L., Giese W., Sutton T., Agam N., Ben-Gal A., Havlin J.L., Sauer T.J. 2014. Implications of an Interrow Fescue Cover Crop for Below-Canopy Water Dynamics in a North Carolina Vineyard. Agronomy Journal, 106, 1267-1274.

[27]

Agam N. 2014.  Comment on “Microlysimeter station for long term non-rainfall water input and evaporation studies” by Uclés et al.  Agricultural and Forest Meteorology, 194, 255–256.

[26]

Kool D., Agam N., Lazarovitch N., Heitman J., Sauer T., Ben-Gal A. 2014. Review on partitioning evapotranspiration into evaporation and transpiration components. Agricultural and Forest Meteorology, 184, 56-70.

[25]

Agam N., Segal E., Peeters A., Levi A., Dag A., Yermiyahu U., Ben-Gal A. 2014. Spatial Distribution of Water Status in Irrigated Olive Orchards by Thermal Imaging. Precision Agriculture, DOI 10.1007/s11119-013-9331-8.

[24]

Holland S., Heitman J.L., Howard A., Sauer T.J., Giese W., Ben-Gal A., Agam N., Kool D., and Havlin J. 2013. Micro-Bowen Ratio System for Measuring Evapotranspiration in a Vineyard Interrow. Agricultural and Forest Meteorology, 117, 93-100.

[23]

Agam N., Cohen Y., Alchanatis V., Ben-Gal A. 2013. How sensitive is the CWSI to changes in solar radiation? International Journal of Remote Sensing, 34, 6109-6120.

[22]

Agam N., Cohen Y., Berni J.A.J., Alchanatis V., Kool D., Dag A., Yermiyahu U., Ben-Gal A. 2013. An Insight to the Performance of Crop Water Stress Index for Olive Trees. Agricultural Water Management, 118, 79-86.

[21]

Prueger J.H., Alfieri J.G., Hipps L.E., Kustas W.P., Chavez J.L., Evett S.R., Anderson M.C., French A.N., Neale C.M.U., McKee L.G., Hatfield J.L., Howell T.A., Agam N. 2012. Patch scale turbulence over dryland and irrigated surfaces in a semi-arid landscape during BEAREX08. Advances in Water Resources, 50, 106-119.

[20]

Agam N., Kustas W.P., Evett S.R., Colaizzi P.D., Cosh M., McKee L.G.  2012.  Soil heat flux variability influenced by row direction in irrigated cottonAdvances in Water Resources, 50, 31-40.

[19]

Agam N., Evett S.R., Tolk J.A., Kustas W.P., Colaizzi P.D., Alfieri J.G., McKee L.G., Copeland K.S., Howell T.A., Chávez J.L.  2012.  Evaporative loss from irrigated interrows in a highly advective semi-arid agricultural area. Advances in Water Resources, 50, 20-30.

[18]

Alfieri J.G., Kustas W.P., Prueger J.H., Hipps L.E., Evett S.R., Basara J.F., Neale C.M.U., French A.N., Collaizzi P.D., Agam N., Chavez J.L., Howell T.A. 2012. On the discrepancy between eddy covariance and lysimetry-based surface flux measurements under strongly advective conditions. Advances in Water Resources, 50, 62-78.

[17]

Colaizzi P.D., Kustas W.P., Anderson M.C., Agam N., Tolk J.A., Evett S.R., Howell T.A., Gowda P.H., O’Shaughnessy S.A.  2012.  Two-source energy balance model estimates of evapotranspiration using component and composite surface temperatures.  Advances in Water Resources, 50, 134-151.

[16]

Evett S.R., Agam N., Kustas W.P., Colaizzi P.D., Schwartz R.C.  2012.  Soil profile method for soil thermal diffusivity, conductivity and heat flux: Comparison to soil heat flux plates.  Advances in Water Resources, 50, 41-54.

[15]

Ben-Gal A., Kool D., Agam N., van Halsema G.E., Yermiyahu U., Yafe A., Presnov E., Erel R., Majdop A., Zipori I., Segal E., Rüger S., Zimmermann U., Cohen Y., Alchanatis V., Dag A.  2010.  Whole-tree water balance and indicators for short-term drought stress in non-bearing ‘Barnea’ olives.  Agricultural Water Management, 98, 124-133.

[14]

Agam N., Kustas W.P., Anderson M.C., Norman J.M., Colaizzi P.D., Howell T.A., Prueger J.H., Meyers T. and Wilson T.  2010. Application of the Priestley-Taylor Approach in a Two-Source Surface Energy Balance Model.   Journal of Hydrometeorology, 11, 185-198.

[13]

Karnieli A., Agam N., Pinker R.T., Anderson M.C., Imhoff M.L., Gutman G.G., Panov N. and Goldberg A. 2010. Use of NDVI and land surface temperature for drought assessment: Merits and limitations. Journal of Climate, 23, 618-633.

[12]

Ben-Gal A., Agam N., Alchanatis V., Cohen Y., Yermiyahu U., Zipori I., Presnov E., Sprintsin M. and Dag A.  2009.  Evaluating water stress in irrigated olives: correlation of soil water status, tree water status, and thermal imagery.  Irrigation Science, 27, 367-376.

[11]

Anderson M.C., Norman J.M., Kustas W.P., Houborg R., Starks P.J., and Agam N., 2008.  Mapping coupled carbon and water fluxes at the land surface using thermal remote sensing data. Remote Sensing of Environment, 112, 4227–4241. 

[10]

Agam N., Kustas W.P., Anderson M.C., Li F. and Colaizzi P.D.  2008.  Utility of thermal image sharpening for monitoring field-scale evapotranspiration over rainfed and irrigated agricultural regions.  Geophysical Research Letters, 35, L02402, doi:10.1029/2007GL032195.

[9]

Katata G., Haruyasu N., Ueda H., Agam N. and Berliner P.R.  2007.  Development of a land surface model including evaporation and adsorption processes in the soil for the land-air exchange at arid regions.  Journal of Hydrometeorology, 8, 1307–1324.

[8]

Agam N., Kustas W.P., Anderson M.C., Li F. and Colaizzi P.D.  2007.  Utility of thermal sharpening over Texas High Plains irrigated agricultural fieldJournal of Geophysical Research – Atmosphere, 112, D19110, doi:10.1029/2007JD008407.

[7]

Agam N., Kustas W.P., Anderson M.C., Li F. and Neale C.M.U.   2007.  A vegetation index based technique for spatial sharpening of thermal imagery. Remote Sensing of Environment, 107, 545-558.

[6]

Karnieli A., Bayasgalan M., Bayarjargal Yu., Agam N., Khudulmur S. and Tucker C.J. 2006.  Comments on the use of the Vegetation Health Index over Mongolia. International Journal of Remote Sensing, 27, 2017-2024.

[5]

Agam N. and Berliner P.R.  2006.  Dew formation and water-vapor adsorption in semi-arid environments - A review.  Journal of Arid Environments, 65, 572-590.

[4]

Ben-Ze’ev E., Karnieli A., Agam N., Kaufman Y. and Holben B.  2006.  Assessing vegetation condition in the presence of biomass burning smoke by applying the Aerosol-Free Vegetation Index (AFRI) on MODIS images.  International Journal of Remote Sensing, 27, 3203–3221.

[3]

Agam (Ninari) N., Berliner P.R., Zangvil A. and Ben-Dor E.  2004.  Soil water evaporation during the dry season in an arid zone.  Journal of Geophysical Research – Atmosphere, 109, D16103, doi:10.1029/2004JD004802.

[2]

Agam (Ninari) N. and Berliner P.R.  2004.  Diurnal water content changes in the bare soil of a coastal desert.  Journal of Hydrometeorology, 5, 922-933.

[1]

Ninari N. and Berliner P.R.  2002.  The role of dew in the water and heat balance of bare Loess soil in the Negev Desert: Quantifying the actual dew deposition on the soil surface.  Atmospheric Research, 64, 325-336.

Book Chapters

[1]

Kustas W.P., Agam N. Soil Evaporation. 2013. In: Wang Y.Q. (Ed.). Encyclopedia of Natural Resources. Taylor & Francis, New-York. In press.

My PhD Thesis

 

The contribution of dew to the water and heat balance of bare soil in a desert area.