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ensing methodologies for mapping instantaneous land-surface fluxes of water,
energy and CO2 exchange within a coupled framework add significant value to large-scale monitoring
networks like FLUXNET, facilitating upscaling of tower flux observations to address questions of regional
carbon cycling and water availability. This study investigates the implementation of an analytical, light-use
efficiency (LUE) based model of canopy resistance within a Two-Source Energy Balance (TSEB) scheme driven
primarily by thermal remote sensing inputs. The LUE model computes coupled canopy-scale carbon
assimilation and transpiration fluxes, and replaces a Priestley–Taylor (PT) based transpiration estimate used
in the original form of the TSEB model. In turn, the thermal remote sensing data provide valuable diagnostic
information about the sub-surface moisture status, obviating the need for precipitation input data and
prognostic modeling of the soil water balance. Both the LUE and PT forms of the model are compared with
eddy covariance tower measurements acquired in rangeland near El Reno, OK. The LUE method resulted in
improved partitioning of the surface energy budget, capturing effects of midday stomatal closure in response
to increased vapor pressure deficit and reducing errors in half-hourly flux predictions from 16 to 12%. The
spatial distribution of CO2 flux was mapped over the El Reno study area using data from an airborne thermal
imaging system and compared to fluxes measured by an aircraft flying a transect over rangeland, riparian
areas, and harvested winter wheat. Soil respiration contributions to the net carbon flux were modeled
spatially using remotely sensed estimates of soil surface temperature, soil moisture, and leaf area index.
Modeled carbon and water fluxes from this heterogeneous landscape compared well in magnitude and
spatial pattern to the aircraft fluxes. The thermal inputs proved to be valuable in modifying the effective LUE
from a nominal species-dependent value. The model associates cooler canopy temperatures with enhanced
transpiration, indicating higher canopy conductance and carbon assimilation rates. The surface energy
balance constraint in this modeling approach provides a useful and physically intuitive mechanism for
incorporating subtle signatures of soil moisture deficiencies and reduced stomatal aperture, manifest in the
thermal band signal, into the coupled carbon and water flux estimates.

Published by Elsevier Inc.
1. Introduction
Given the physical interconnections between the land-surface
water, energy and carbon cycles, and the importance of understanding
and quantifying these cycles as they apply to issues of climate change
and water availability, there is benefit to developing robust yet simple
remote sensing models that will simulate regional fluxes of latent and
sensible heat and CO2 exchange within a unified, self-consistent
framework. Remote sensing models provide the spatial context for
upscaling point flux measurements from large-scale tower networks
like FLUXNET to assessments of the carbon and water budgets at the
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continental scale. In the remote sensing community, models of
evapotranspiration and carbon flux have tended to evolve indepen-
dently, using very different physical constraints and modeling
approaches (e.g., energy balance vs. biogeochemical cycling). How-
ever, because CO2 and water exchanges at the leaf surface are jointly
controlled by stomatal aperture, these fluxes can be well correlated in
space and time at the landscape scale and such natural correlations
are best reproduced by a coupled modeling approach. Furthermore,
the additional constraints required to model the bulk canopy
resistance and assimilation flux have the potential for improving
estimates of ET from surface energy balance models, provided the
required meteorological inputs and model parameters can be
specified with adequate accuracy.

The benefits of coupled modeling systems have been realized in
many studies at the plant to canopy scales where biochemical models
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of photosynthesis (Farquhar et al., 1980; Berry and Farquhar, 1978;
Collatz et al., 1992) and models of stomatal resistance (Jarvis, 1976;
Wong et al., 1979; Ball et al., 1986; Leuning, 1990, 1995) have been
embeddedwithin a surface energy andwater balance framework (e.g.,
Norman, 1979; Leuning et al., 1995; Sellers et al., 1996; Baldocchi and
Wilson, 2001; Kim and Lieth, 2003; Tuzet et al., 2003). The energy
balance component is critical as it determines the characteristic leaf
temperature, which in turn influences vapor pressure gradients and
relative humidity conditions at the leaf surface governing transpira-
tion and stomatal resistance, and the kinetics of carbon uptake. Soil
water potential influences stomatal aperture (Gollan et al., 1986), and
so a functional description of water supply from the plant root zone is
also important (Tuzet et al., 2003). Increased stomatal resistance
reduces transpiration water losses and evaporative cooling of the leaf
surface, thereby increasing leaf temperature, so exchanges of water,
heat and carbon are intimately coupled.

While deterministic, bottom–up modeling approaches allow
detailed examination of important canopy-scale processes, they can
be difficult to apply at the regional scale because they require accurate
specification of numerous soil and plant physiological characteristics
and parameter values. A sub-surface soil water balance must be
maintained at each model grid cell, along with species-appropriate
root uptake functions connecting the soil and plant water potentials.
Biases in input fields describing antecedent precipitation rates and soil
hydraulic properties can lead to significant biases in the modeled
fluxes that will accumulate with time (Betts et al., 1997; Schaake et al.,
2004). In addition, mechanistic models of carbon fixation developed
at the leaf scale require robust schemes for upscaling to the canopy
and regional levels. Complex feedback systems can cause bulk
stomatal response to external driving factors to be highly scale
dependent (McNaughton and Jarvis, 1991; Avissar, 1993; Anderson
et al., 2003).

These data and modeling demands can be relieved to some extent
by using remote sensing to diagnose important surface conditions,
bypassing the need to model these conditions explicitly. Zhan and
Kustas (2001), for example, describe a diagnosticmethod formodeling
coupled CO2 and water vapor fluxes that uses remote sensing
information in the thermal infrared (TIR) band in place of a soil
moisture submodel. Thermal imaging can detect elevated canopy
temperatures resulting from moisture deficits in the plant root zone
and, in partially vegetated landscapes, the increase in soil surface
temperature as the surface available moisture is depleted (e.g., Smith
et al., 1985; Gillies and Carlson, 1995; Moran, 2003; Anderson et al.,
2007a). Zhan and Kustas (2001) incorporated models of photosynth-
esis and stomatal resistance into the Two-Source (soil+canopy)
Energy Balance (TSEB) model (Norman et al., 1995), which partitions
surface radiometric temperature into component soil and canopy
temperatures. These component temperatures effectively integrate
effects of both the sub-surface moisture status and the radiative/
meteorological forcings on the system. Zhan and Kustas found that the
radiometric temperature data were an effective substitute for in-situ
surface moisture observations, and in fact gave better agreement with
observed fluxes than did a model version using soil moisture data
directly. TIR remote sensing data have also been used in a data
assimilation mode to recalibrate temperature and moisture-related
parameters in ET-photosynthesis models (Olioso et al., 1999; Coudert
and Ottlé, 2007; Coudert et al., 2008).

Monteith (1966) suggested that the photosynthesis component of
coupled modeling systems might be simplified by using measure-
ments of canopy light-use efficiency (LUE, also designated β). Here,
LUE is defined as the ratio between net canopy carbon assimilation
rate, AC, and the photosynthetically active radiation (PAR) absorbed by
the vegetative canopy (APAR). LUE models provide an economical
means for mapping carbon exchange over large geographical regions
because they require relatively few species-dependent parameters
and are founded on APAR, a quantity that can be derived with
reasonable accuracy from remote sensing (e.g., Myneni et al., 1995;
Landsberg et al., 1997). Light-use efficiency has been found to be
fairly conservative within broad plant species when the vegetation
is unstressed and when disparities in measurement technique are
accounted for (Monteith, 1977; Arkebauer et al., 1994; Goetz and
Prince, 1998; Gower et al., 1999; Anderson et al., 2000), with extensive
data for many species available in the literature. And because assim-
ilation scaling effects are implicitly incorporated into stand-level
measurements of LUE, β can provide a valuable constraint to carbon
flux modeling at the regional scale.

Prominent LUE models of net primary production include BIOME-
BGC (Running and Hunt, 1993) and the CASA (Carnegie Ames Stanford
Approach) model (Potter et al., 2003), which are process based,
running on daily to monthly timesteps. These biogeochemical models
track the stocks and transfer of carbon in and between various pools,
accounting for litter fall, decomposition, soil nutrient mineralization,
and CO2 exchange with the atmosphere. Moisture stress functionals
modifying a nominal unstressed LUE are typically derived using
observed or simulated precipitation data and a soil moisture storage
model, while temperature stress is inferred from gridded air
temperatures.

Anderson et al. (2000) proposed an alternative, micrometeorolo-
gical approach for implementing a LUE constraint on CO2 exchanges.
This approach employs an analytical expression for the bulk canopy
resistance that is semi-constrained by a nominal value of unstressed
canopy LUE. Coupled canopy transpiration and carbon assimilation
fluxes are computed using gradient-resistance equations, which can
be evaluated at sub-hourly timesteps. Anderson et al. (2000)
demonstrated that when embedded within a prognostic modeling
framework using boundary conditions supplied by numerical soil heat
and water transport sub-models and in-situ weather measurements,
the analytical canopy resistance model accurately reproduced micro-
meteorological measurements of water, energy and carbon fluxes
acquired over forest, grassland, and agricultural sites.

In this paper, we evaluate the performance of the analytical canopy
resistance model when embedded within the diagnostic thermal-
based TSEB model. The result is a fully coupled carbon–water–energy
balance model based on remote sensing that is well suited for routine
regional applications. This model can be applied to thermal imagery
from geostationary satellites like GOES (5–10 km) or polar orbiting
satellites like Landsat (60–120 m resolution), ASTER (90 m), MODIS
(1 km) or from aircraft (b50m), and so presents a flexible and scalable
mechanism for generating surface flux distributions that may be
useful in reconciling “top–down” (e.g., atmospheric) and “bottom–up”
(e.g., scaled leaf) flux modeling and measurement strategies, with the
goal of improving regional scale carbon and water budgets.

The coupledmodeling system is evaluated using tower and aircraft
flux measurements collected over the El Reno (ER) study area during
the Southern Great Plains experiment of 1997 (SGP97; Jackson et al.,
1999), a heterogeneous landscapewith strong variability in vegetation
cover and moisture conditions. The value of the thermal remote
sensing inputs in the carbon flux assessment is reflected in the fact
that the modeled effective LUE adjusts from the nominal value in
response to variability in surface temperature across the landscape,
enhancing canopy carbon uptake in areas where cooler canopy
temperatures suggest higher values of transpiration and canopy
conductance.

Section 2 provides a description of the original form of the TSEB
model (TSEB_PT), which uses the Priestley–Taylor (PT) approximation
(Priestley and Taylor, 1972) to obtain an initial estimate of canopy
transpiration and has been previously evaluated over the ER study
area using both local and regional forcings (Norman et al., 2003;
French et al., 2003; Kustas et al., 2006). LUE-basedmodifications to the
TSEB (TSEB_LUE) are then outlined, along with a simple soil
respiration model geared towards remote sensing. The hierarchical
data collection scheme used in SGP97 is described in Section 3,



Fig.1. Schematic diagram representing the ALEXI (a) and DisALEXI (b) modeling schemes, highlighting fluxes of sensible heat (H) from the soil and canopy (subscripts ‘s’ and ‘c’) along
gradients in temperature (T), and regulated by transport resistances RA (aerodynamic), Rx (bulk leaf boundary layer) and RS (soil surface boundary layer). DisALEXI uses the air
temperature predicted by ALEXI near the blending height (TA) to disaggregate 5–10 km ALEXI fluxes, given vegetation cover (f(θ)) and directional surface radiometric temperature
(TRAD(θ)) information derived from high-resolution remote sensing imagery at look angle θ. See Norman et al. (2003) for further details.

Table 1
Primary input data used in the TSEB_PT and TSEB_LUE models, and data sources for
regional application (DisALEXI) over the ER study area

Data Purpose Source

PT and LUE
TRAD Surface temperature TIMS
TA Upper boundary ALEXI
LAI TSEB partitioning, roughness TMS
Land-cover type Assigning parameter values TMS
Downwelling radiation Net radiation GOES
Windspeed Transport resistances Synoptica

LUE only
eA Upper boundary Synoptica

CA Upper boundary Climatology

a Meteorological data from the standard U.S. synoptic weather network (~100-km
spacing) been analyzed to 40-km resolution within the analysis component of the
Cooperative Institute for Meteorological Satellite Studies (CIMSS) mesoscale model
(Diak et al., 2003).
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combining local observations at distributed tower sites with regional
flux and remote sensing from aircraft overflights to upscale fluxes to
the watershed level. In Section 4, the relative utility of the TSEB_PT
and TSEB_LUE models is compared in terms of energy budget
partitioning, using TIR and micrometeorological data collected at
two tower sites in the ER study area. An application of the regional
TSEB_LUE model to aircraft remote sensing in TIR, shortwave and
microwave bands is described in Section 5, with comparisons against
spatial patterns in fluxes measured over the aircraft transect. Finally,
prospects for further model development and applications are
outlined in Section 6.

2. Model description

2.1. TSEB-DisALEXI

The modeling system proposed here is based on the series version
of the diagnostic Two-Source Energy Balance (TSEB) land-surface
representation of Norman et al. (1995), and subsequent modifications
described by Kustas and Norman (1999b, 2000). The TSEB partitions
the observed directional surface radiometric temperature, TRAD(θ),
into soil and canopy temperature components, TS and TC, based on the
local green vegetation cover fraction apparent at the thermal sensor
view angle, f(θ) :

TRAD θð Þ ¼ f θð ÞT4
C þ 1− f θð Þ½ �T4

S

� �1=4
; ð1Þ

along with equations governing energy balance in the soil and canopy
subsystems. For a homogeneous canopy with a spherical leaf angle
distribution and leaf area index (LAI) F,

f θð Þ ¼ 1− exp
−0:5F
cosθ

� �
: ð2Þ

Sensible heat fluxes from the soil and canopy (HS and HC) are
directly constrained by the derived soil and canopy temperatures and
a measurement or estimate of above-canopy air temperature (TA; see
Fig. 1). Given these fluxes and remotely sensed estimates of soil and
canopy net radiation (RNS and RNC), soil heat conduction (G), and
canopy transpiration (LEC), the evaporation from the soil surface (LES)
is computed as a residual to the two-source surface energy balance
equation:

LES ¼ RNC þ RNS − G −HS −HC − LEC : ð3Þ

Two alternative methods for estimating LEC are described and
compared below, and input data requirements for regional application
of the TSEB are listed in Table 1. The basic equation set is outlined in
Table A1.

For mapping over field campaign sites, the upper boundary
conditions in air temperature required for the TSEB have typically
been obtained from a meteorological station located within the
modeling scene (Kustas et al., 2004; Li et al., 2006, 2008). In general,
however, we cannot rely on the availability of local air temperature
data, and interpolated temperatures from synoptic datasets generally
do not have adequate accuracy and consistency with the TIR data for
good flux assessments. Therefore, for regional scale flux mapping, the



4230 M.C. Anderson et al. / Remote Sensing of Environment 112 (2008) 4227–4241
TSEB has been coupled with a simple model of atmospheric boundary
layer (ABL) development (McNaughton & Spriggs, 1986) such that
above-canopy air temperature is simulated internally at a nominal
blending height and is consistent with the modeled surface fluxes
(Anderson et al., 1997; see Fig. 1). The primary remote sensing input to
the resulting Atmosphere-Land Exchange Inverse (ALEXI) model is a
measurement of morning surface temperature rise, which can be
obtained in the U.S. with the Geostationary Operational Environ-
mental Satellites (GOES). Currently, the regional ALEXI model is being
applied on a daily basis at 10-km resolution over the continental U.S.
using data from GOES-E and -W (Anderson et al., 2007a,b), processed
with an automated system. To create flux maps at finer resolutions
than those afforded by geostationary satellites, Norman et al. (2003)
developed the DisALEXI technique for spatially disaggregating coarse-
scale ALEXI flux estimates. The DisALEXI model is identical to the
TSEB, but uses air temperatures diagnosed by ALEXI rather than local
observations to evaluate fluxes at the landscape scale. While ALEXI
requires time-differential temperature data, DisALEXI can be applied
to single thermal images and therefore is well suited for high-
resolution imaging systems on aircraft or polar orbiting satellites like
Landsat, ASTER, or MODIS.

The hierarchical connections between the TSEB, ALEXI and
DisALEXI models are described in greater detail by Anderson et al.
(2004, 2007).

2.2. PT transpiration submodel

To estimate canopy transpiration, LEC, the original TSEB model
formulation (TSEB_PT; Norman et al., 1995) initially assigns a potential
rate obtained by applying the Priestley–Taylor (PT; Priestley & Taylor,
1972) equation to the divergence of net radiation within the canopy
(Tanner & Jury, 1976; see also Eq. (A10) in the Appendix A). When the
observed surface temperature is higher than expected for an
unstressed canopy of a given vegetation cover fraction, the energy
balance algorithm causes LES to become negative, suggesting con-
densation on the soil. As this is unlikely under the midday conditions
Fig. 2. Schematic diagram describing the LUE-based canopy resistance method f
when thermal satellite imagery are typically collected, negative LES is
regarded as an indication that transpiration has been throttled back
due to stress-induced stomatal closure, and the effective PT coefficient
is therefore iteratively reduced until LES approaches zero.

While the PT approximation is known to have limitations (e.g.,
McAneney and Itier, 1996), this modeling scheme has been demon-
strated to provide reasonable estimates of system latent heating over a
wide range of climatic and vegetation cover conditions (Norman et al.,
1995, 2003; Anderson et al., 2004; Kustas et al., 2004; Li et al., 2006,
2008). One criticism of the PT method is that the bulk coefficient, as
applied to the system evapotranspiration flux, is not conservative but
tends to decrease at low values of leaf area index (LAI). This is an
artifact of the fact that ET at low cover is dominated by direct soil
evaporation, which diminishes rapidly after a rainfall event (Stannard,
1993).

Still, the PTapproximationmay be limiting the accuracy of TSEB_PT
partitioning of LE between LEC and LES under some conditions. First,
there is no trigger for downadjusting the canopy PT coefficient until
the LES=0 threshold is reached. This may result in an overestimation
of LEC under conditions of moderate, midday stomatal closure.
Similarly, there is no built-in mechanism in TSEB_PT for increasing
the PT coefficient in response to enhanced atmospheric demand, as in
areas of high vapor deficit and strong dry air advection. Kustas and
Norman (1999a) found that in irrigated row cotton in Arizona, the
canopy PT coefficient had to be increased a priori from a typical value
of 1.26 to 2.0 to account for increased local evaporation due to
advection of hot dry air from surrounding areas of unirrigated and
uncultivated bare soil. Both of these situations may be better
addressed under the LUE model formulation, which facilitates
response to local vapor pressure conditions.

2.3. LUE transpiration/assimilation submodel

In comparison with TSEB_PT, the TSEB_LUE model (Fig. 2) requires
two additional model inputs: the ambient vapor pressure (eA) and CO2

concentration (CA, see Table 1); but enables the estimation of the
or computing coupled carbon and water fluxes within the TSEB framework.



Fig. 3. RGB three-color composite image of the El Reno (ER) study area, generated with
TMS bands 7–5–3 (NIR–Red–Green). Line indicates aircraft transect, and crosses show
ER sampling and tower locations referenced in the text. (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of this
article.)
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canopy carbon assimilation flux, which is coupled to the transpiration
flux through the bulk canopy resistance (RC). These additional inputs
serve as upper boundaries for the flux-gradient computations of LEC
and AC. The vapor pressure is particularly important for modeling
stomatal response to atmospheric conditions, and enables simulation
of midday stomatal closure as the in-canopy airspace becomes
increasingly desiccating.

The equations describing the analytical canopy resistance model
are given in Anderson et al. (2000) and summarized in Table A1. In the
context of the TSEB, these equations are solved iteratively in parallel
with those for the other flux components as described in Appendix A
of Norman et al. (1995). The first iteration uses the PT submodel to
generate initial estimates of the system latent heat flux and canopy
temperature. On the 2nd iteration, the initial LE is inverted to
extrapolate the vapor pressure gradient from above-canopy (eA) to in-
canopy (eAC) conditions (Fig. 2). Values for eAC and TC from the TSEB
are passed into the LUE submodel; together they define the water
vapor pressure gradient from the substomatal cavities in the leaves
(assumed to be saturated at temperature TC; e⁎ (TC)) to the in-canopy
airspace. These inputs are used along with a nominal value of LUE (βn)
and estimates of the bulk leaf boundary layer resistance, RB, and the
aerodynamic resistance, Ra, to solve a cubic function in RC (Eq. (11) in
Anderson et al., 2000). Updated estimates of LEC (and AC) are then
obtained from RC; then HC, HS and LES, along with TS and TC, are
recomputed through the TSEB energy balance; and the iteration
continues until the system converges using canopy temperature and
sensible heat as convergence tracers.

In this process, an effective LUE (β) is diagnosed by the analytical
model (Eq. (A21)). This effective LUE is modified from the nominal
stand-level value (βn; an input parameter, indexed by vegetation
class), and includes response to varying environmental conditions in
humidity, temperature (ambient and leaf), wind speed, CO2 concen-
tration, and direct beam vs. diffuse light composition through the
system of micrometeorological flux-gradient equations. The change in
LUE from its nominal value, Δβ=β−βn, reflects the magnitude of this
response. In the TSEB_LUE, the canopy temperature diagnosed from
the thermal remote sensing data replaces the need for a soil model
and precipitation data in conveying information about the surface
moisture status. All LUE model parameter values (Table A3) are
derived from physical measurements reported in the literature or
from simulations with a comprehensive numerical soil–plant–atmo-
sphere model (Cupid; Norman, 1979) applied to generic datasets. No
local calibration is required by either TSEB_PT or TSEB_LUE.

2.4. Soil respiration model

To compare TSEB_LUE estimates of canopy carbon assimilation (AC)
with measurements of Net Ecosystem Exchange (NEE or A=AC−AS)
made by towers or aircraft, a model estimate of heterotrophic soil
respiration (AS; defined as positive away from the soil surface, as in
Fig. 2) is required. In keeping with the pragmatic carbon mapping
approach proposed here, we use a simple empirical model of Norman
et al. (1992) that can be computed using quantities derived from
remote sensing:

AS ¼ 0:135þ 0:054Fð Þθ10exp 0:069 Ts;10 − 25:0
� �� � ð4Þ

where F is the leaf area index (serving as a proxy indicator for root
biomass), θ10 is the 0- to 10-cm average volumetric water content in
percent, and TS,10 is the 10-cm soil temperature (C). The coefficients in
Eq. (4) were obtained using ground-based data collected during the
First ISLSCP (International Satellite Land Surface Climatology Project)
Field Experiment of 1987 (FIFE; Sellers et al., 1992), conducted near
the Konza Prairie Research Natural Area near Manhattan, Kansas. For
spatial mapping applications, soil moisture can be estimated from
microwave remote sensing, LAI from a visible/near-infrared band
vegetation index like the Normalized Difference Vegetation Index
(NDVI) or reflectance model inversion, while soil temperature is
derived internally by the TSEB from thermal band imagery.

3. Data

3.1. Study site

Aircraft remote sensing and flux data were collected periodically
over a study area near El Reno, OK (ER) during the SGP97 field
experiment in July of 1997 (Fig. 3). In addition, several eddy covariance
towers were deployed on the grounds of the USDA Agricultural
Research Service (ARS) Grazinglands Research Laboratory, measuring
time-continuous flux andmicrometeorological data. The ER landscape
consists primarily of rangeland and pasture, narrow forested riparian
areas, and fields of winter wheat and other crops. The rangeland/
pasture is a mixture of predominantly C4 (warm-season) grasses with
a smaller percentage of C3 (cool-season) weeds. C4 species are
typically more tolerant to high temperature and drought conditions
and exhibit higher light-use efficiency, fixing more units of carbon per
unit water loss than do C3 plants.

At the time of data acquisition, the pastures and rangeland were in
full vegetation cover (redder areas in Fig. 3), while the winter wheat
fields were generally mature and senesced or recently harvested,
either with stubble or tilled to bare soil. The aircraft data analyzed
here were collected on DOY 183 (2 July), 4 days into a local dry-down
following a 6-cm precipitation event on DOY 179. By DOY 183, the
harvestedwheat fields were relatively dry whereas the grasslands and
riparian areas maintained high ET rates, yielding a variable patchwork
of moisture conditions across the modeling domain.

The experiment plan for SGP97 and descriptions of the sam-
pling protocols can be found on the web at http://daac.gsfc.nasa.gov/
fieldexp/SGP97/.

3.2. Aircraft flux data

Aircraft flux and atmospheric boundary layer profiling observa-
tions were made over the ER site by the National Research Council
(NRC) Canada Twin Otter atmospheric research aircraft. A summary of
the aircraft observations, instrument description, data processing and
preliminary flux estimates for the run-averaged data for each flux
transect are given in the data report (MacPherson, 1998). A single
flight track, ~15 km in length, was flown over the ER study area
multiple times during each mission with the aircraft flying essentially
east–west (see Fig. 3) at approximately 35 m above local ground level
(agl). During the mid-morning aircraft survey on DOY 183 used here
(starting at 10:33 AM Central Standard Time, or CST), winds at 35 m
agl were 2.7 m s−1 from the SW. From eddy covariance flux data
collected over the entire ER transect, Mahrt et al. (2001) computed
segmented flux values over 1-km intervals, which they then sub-
sampled using a 250-m moving window and a scheme for the
estimating time–space dependence of surface fluxes.

http://daac.gsfc.nasa.gov/fieldexp/SGP97/
http://daac.gsfc.nasa.gov/fieldexp/SGP97/


Table 2
Quantitative measures of TSEB model performancea in estimating half-hourly daytime
fluxes measured at individual EC towers in the ER study area

Flux N Ō MBE RMSD r2 E %
errorW m−2 W m−2 W m−2

Bowen ratio closure
PT
RN 698 420 −3 29 0.98 0.98 5
LE 698 335 47 79 0.90 0.76 19
H 698 54 −53 69 0.68 0.09 107
G 698 31 3 28 0.32 0.31 69
All 2792 210 −1 56 0.95 0.94 19

LUE
RN 698 420 −4 30 0.98 0.98 5
LE 698 335 24 48 0.93 0.91 11
H 698 54 −34 50 0.82 0.51 70
G 698 31 6 23 0.59 0.52 59
All 2792 210 −2 40 0.97 0.97 14

Residual closure
PT
RN 694 421 −3 29 0.98 0.98 5
LE 694 351 32 66 0.92 0.84 15
H 694 39 −38 51 0.72 0.32 110
G 694 31 3 28 0.32 0.31 69
All 2776 210 1 46 0.97 0.96 16

LUE
RN 694 421 4 30 0.98 0.98 5
LE 694 351 9 40 0.94 0.94 9
H 694 39 −19 39 0.90 0.61 78
G 694 31 6 23 0.59 0.52 59
All 2776 210 −2 34 0.98 0.98 12

a Here N is the number of observations, Ō is the mean observed flux, RMSD is the
root-mean-square difference between the modeled (P) and observed (O) quantities,
MBE is the mean bias error (P̄− Ō), r2 is the coefficient of determination in a linear
regression of P on O, E is the coefficient of efficiency, and the percent error is defined as
the mean absolute difference between P and O divided by the mean observed flux.
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3.3. Aircraft remote sensing data

High-resolution surface radiometric temperature, vegetation
cover, and land-use maps were derived from images acquired with
the Thermal Infrared Multispectral Scanner (TIMS) and the Thematic
Mapper Simulator (TMS), flown by aircraft over the ER site. The TIMS
instrument is a six-channel scanner operating in the thermal infrared
(8–12 μm) region of the electromagnetic spectrum, while TMS
simulated the Landsat TM bands and was used to create maps of
NDVI. Both sensors were flown on a DOE Cessna Citation aircraft at
~5 km agl, yielding a ground resolution of approximately 12 m. To
accurately rectify and co-register the TMS and TIMS imagery, TIMS and
TMS data were re-sampled and then aggregated to 30 m. The average
TIR sensor viewing angle used in the analysis was on the order of 10°.
The El Reno flight lines provided coverage of an area approximately
8 km north–south by 28 km east–west. Further details concerning the
processing of these data, including corrections for emissivity and
atmospheric effects, are provided by French et al. (2000a,b).
Additionally, a map of land-use/land-cover in the modeling domain
was created by a supervised maximum-likelihood classification
scheme using TMS imagery from DOY 183. The TIMS/TMS data on
DOY 183 were collected at approximately 10:20 AM CST.

Soil moisture fields used in the soil respiration model were
generated from microwave imagery collected at L-band by the ESTAR
(Electronically Scanned Thinned Array Radiometer) instrument, flown
periodically over ER during SGP97 on a P-3 aircraft operated by NASA's
Wallops Flight Center. Details of the processing of the ESTAR data and
the moisture retrieval algorithm are given by Jackson et al. (1999). The
derived soil moisture product has a spatial resolution of 800 m and
represents volumetric moisture content in the 0–5 cm layer. Given that
the soil drying rate typically decreaseswith depth, this 0–5 cm estimate
may somewhat underestimate the 0–10 cm value required by Eq. (4).
Comparisons of microwave soil moisture estimates from SGP97 with
ground-based measurements of volumetric soil moisture in the 0–5 cm
layer yielded errors of approximately 3% (Jackson et al.,1999). The ESTAR
data used in this study were collected at 10:25 CST on DOY 183.

3.4. Tower fluxes and ancillary measurements

Tower observations of energy and water fluxes were collected at
several locations within the ER study area with eddy covariance
instrumentation mounted at 2 m agl, recording half-hourly averaged
fluxes. Twine et al. (2000) provide detailed description of the
observations and an analysis of the measurement uncertainties. The
data used here were collected over a 2 week period (DOY 180–195) at
the ER01JPBK and ERO5JPBK towers (see Table 2 in Twine et al., 2000),
situated in rangeland with average local LAI of 4.2 and 2.6 respectively
(Fig. 3). Meteorological data, including air temperature, vapor
pressure and windspeed, were measured at 2 m agl, and measure-
ments of net radiation, insolation and the soil heat conduction flux
were also collected. Canopy height and LAI were measured periodi-
cally at each tower site, the latter with a LICOR LAI-2000 Plant Canopy
Analyzer1 (Welles and Norman, 1991), with care taken to sample the
local heterogeneity in vegetation cover conditions.

3.5. Soil respiration and ancillary measurements

Measurements of soil respiration and the input data required in
Eq. (4) were made at 10 locations within each of several sites in the
SGP97 study area. A LICOR LI-6000-09 soil chamber was used with a
LI-6262 infrared gas analyzer operated in absolute mode by main-
1 Trade names are included for the benefit of the reader and do not imply an
endorsement of or a preference for the product listed by the U.S. Department of
Agriculture.
taining the reference cell at a zero concentration of CO2. The respi-
ration flux was calculated from the equations in the LI-6000-09
instruction manual using the drawdown in CO2 concentration over a
period of several minutes. The soil collars were installed about 2 cm
into the soil 4–24 h prior to data collection. Soil temperature was
measured at 2-cm and 10-cm depths with a digital thermometer
having a 20-cm length steel probe, while soil volumetric moisture
content for the 0–10 cm depth was calculated from gravimetric water
content and bulk density measurements. Leaf area index was mea-
suredwith a LAI-2000 at each of the 10 sampling locations at each site.

3.6. Energy budget closure corrections

By definition, the TSEB forces closure amongst the considered
energy budget components (Eq. (3)). In contrast, the eddy covariance
flux measurement technique does not enforce closure because the
turbulent fluxes H and LE are measured independent of the available
energy, RN–G. Closure, defined as the ratio (H+LE)/(RN–G), in tower
EC fluxes from SGP97 ranged from 70–90% (Twine et al., 2000). EC
closure errors may represent systematic undersampling of LE and/or
H, an unsampled energy sink (e.g., energy consumed in photosynth-
esis; Meyers and Hollinger, 2004), unrepresentative sampling of RN–G
(Anderson et al., 2004), or differences in source area on the land-
surface contributing to each of these fluxes (Kustas et al., 2006).

Given these observational uncertainties, EC fluxmeasurements are
often adjusted to enforce closurewhen comparingwith surface energy
balance model results. In this way, we can better isolate potential
instrumental components of model-measurement disagreement from
actualmodeling errors. Here, two common closuremethods have been
used: 1) augmenting both H and LE while retaining the observed
Bowen ratio (BR) H/LE (Twine et al., 2000), and 2) assigning the entire
residual to the latent heat flux (Li et al., 2005; Prueger et al., 2005).



Fig. 4. Comparison between measurements made during SGP97 (rangeland) and
predictions of soil respiration generated with an empirical function generated using
FIFE data (tall-grass prairie).

Fig. 5. Estimates of the major energy budget components generated with the TSEB_PT (top
ERO1 and ER05, adjusted using the BR (left column) and residual (right column) closure tec
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4. Local application using in-situ data: comparison with ground-
based flux observations

4.1. Soil respiration

To verify that the parameters derived for the soil respiration model
based on FIFE data in tall-grass prairie are reasonably appropriate for
carbon flux assessments over the ER landscape, Eq. (4) was tested
using the in-situ measurements made during SGP97. Fig. 4 shows a
comparison of modeled and measured AS, yielding a mean absolute
difference (MAD) of 1.0 µmol m−2 s−1 or 20% of the mean observed
flux, a mean bias error (MBE) of 0.2 µmol m−2 s−1, and a correlation
coefficient of 0.8. The root-mean-square error is 1.2 µmol m−2 s−1,
identical to the error obtained in the original FIFE experiment (Norman
et al., 1992). These results suggest that Eq. (4) should yield reasonable
estimates of AS over the ER domain during this time period, provided
the remote sensing inputs are of good quality.

4.2. TSEB-tower comparisons

To assess the best-case performance of the modeling system over
the ER landscape, the TSEB was run with both the PT and LUE
transpiration subroutines (TSEB_PT and TSEB_LUE, respectively) at the
ER01 and ER05 meteorological stations using in-situ measurements.
line) and TSEB_LUE (bottom line) models compared with tower flux measurements at
hniques.



Fig. 6. Impact of choice of nominal LUE (βn) parameter value on a) carbon flux estimates
and b) energy budget partitioning, comparing results using βn for a C3/C4mixed canopy
and βn for a pure C4 grass stand.
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Local observations of LAI and canopy height, and tower-based
measurements of surface temperature, insolation, wind speed, air
temperature and humidity were used as model inputs. Given the
canopy composition at these sites, model LUE parameter values
representing a mixture of C3 and C4 grasses from Anderson et al.
(2000; see also Table A3) were used in TSEB_LUE. While carbon flux
was not measured at these towers, the impact of the LUE vs. PTmodels
on canopy transpiration and therefore overall energy budget parti-
tioning can be assessed in comparison with tower observations of
RN, G, H and LE.

Half-hourly predictions of energy budget components are com-
pared with the tower measurements in Fig. 5, with related statistics in
Table 2. Included in Table 2 is the coefficient of efficiency (E) proposed
by Nash and Sutcliffe (1970) as a performance metric preferable to the
coefficient of determination (r2), which can indicate perfect agree-
ment even in the presence of systematic model biases. As indicated in
Table 2, both the PT and LUE modeling approaches yield better
agreement withmeasurements closed using the residual method than
the BR method. This is consistent with findings from other experi-
ments comparing the TSEB with tower flux data (Li et al., 2006; Li
et al., 2008), and may reflect a real difference in the way in which H
and LE are transported by turbulent eddies and therefore sampled
with an EC system (Prueger et al., 2005). It may also relate to the
fact that LES is computed as a residual in the TSEB (Eq. (3)) — all
components of the energy budget not explicitly accounted for in the
TSEB (e.g., canopy heat and photosynthetic energy storage) are in
effect accumulated in the modeled LE flux.

While both models reproduce observed fluxes with good accuracy,
the TSEB_LUE formulation gives better overall agreement, particularly
at site ER01 — the site with denser vegetation cover. Based on the
residual-closed observations, the TSEB_LUE yields a root-mean-square
deviation (RMSD) in LE of 40Wm−2 or 9% error (defined as in Table 1),
compared to 66 W m−2 (15%) from the TSEB_PT. Similarly, RMSD in
H is reduced from 51 to 39 Wm−2. For all energy balance components
combined, TSEB_LUE and TSEB_PT produce RMSD values of 34 and
46 W m−2 (12% and 16%), respectively. The PT model has a greater
tendency topartition too large a fraction of the available energy (RN–G)
to latent heating, and this causes H to be underestimated. Appar-
ently the LUE response to surface layer vapor pressure, land-surface
temperature, and other driving factors is more effective than the PT
coefficient modification algorithm in terms of reducing midday tran-
spiration fluxes from the potential rate. TSEB_PT has no mechanism
for reducing the PT coefficient unless LES goes below 0, which did not
happen during this time period.

The effect of the choice of nominal LUE, βn, on TSEB_LUE estimates
of carbon assimilation and energy budget partitioning is demonstrated
in Fig. 6. In using βn=0.025 (C3/C4 grass mix) instead of βn=0.03 (pure
C4 stand), AC is decreased to 72% of the C4 value, roughly in proportion
to the ratio of nominal LUE values (0.8). The effect on energy budget
partitioning, however, is minimal: LE is reduced by only 1% on average.
These results suggest that while realistic values of βn are critical for
modeling carbon fluxes accurately, the exact value of βn is not so
important for determining the energy budget. Note that mechanistic
photosynthesis models are also very sensitive to choice of primary
model parameters, such as the maximum photosynthesis rate, Vmax

(e.g., Dang et al., 1998).

5. Regional application using remote sensing: comparison with
aircraft fluxes

5.1. Soil respiration mapping

To map soil respiration using Eq. (4), estimates of θ10 were
obtained from a soil moisture map derived from ESTAR microwave
imagery obtained on DOY 183. Because the microwave soil moisture
retrievals effectively sample only the top few cm of the soil profile, it is
likely that θ10 and therefore AS are underestimated, particularly in
areas of low vegetation cover where the soil surface skin can dry
quickly after a rainfall. However, themagnitude of AS in Eq. (4) is linear
in LAI, so the overall flux in low cover areas should also be small.

Soil temperature at depth z=10 cm (TS,10) was computed by
interpolating between the soil surface temperature (TS) derived by the
TSEB and a climatological deep soil temperature (Td, held constant at
20 °C across the domain) using an exponential weighting function:

T zð Þ ¼ Td þ TS − Tdð Þ exp −z
D

� 	
ð5Þ

where D is the thermal damping depth, assumed to be 10 cm for the
loam soils characteristic of the ER study area.

Fractional vegetation cover at nadir view, f (0), was computed from
the TMS NDVI data using the scaled relationship given by Choudhury
et al. (1994), and LAI was then estimated using Eq. (2). The modeled
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LAI agrees to within 0.3 with LAI-2000 measurements taken at ER01,
ER05, and ER13, sampling a range in LAI from 0 to 4.

5.2. Flux maps

To investigate spatial patterns in surface fluxes over the ER study
area, the regional form of the TSEB_LUE (DisALEXI_LUE) was executed
with the TIMS/TMS imagery as described by Norman et al. (2003) and
Kustas et al. (2006), but using the LUE submodel for LEC in place of the
PT submodel. As described in Section 2.1 and Table 1, DisALEXI_LUE
uses air temperature boundary conditions diagnosed by the ALEXI
model and vapor pressure data analyzed from standard synoptic
observations in place of local tower observations, and therefore can be
readily applied in areas where local data are not available. In this
simulation, LUE parameters for C3/C4 grass mixture were used for
classes representing rangeland and pasture (typically the redder
regions in Fig. 3), while C3 parameters were used at pixels classified as
wheat and alfalfa (Table A3).

Maps of component and systemfluxes of CO2 and latent heating are
shown in Fig. 7, demonstrating the soil–canopy partitioning predicted
by the two-source land-surface representation in DisALEXI_LUE. For
comparison, the two primary remote sensing inputs to DisALEXI_LUE,
NDVI and TRAD, are also shown. Themaps of canopy transpiration (LEC)
and assimilation (AC) are well correlated with NDVI (R2=0.94 for both)
and with each other (R2=0.96). In the absence of vegetation stress,
these canopy fluxes should scale roughly in proportion to LAI.

Fig. 7 also shows a map of AS modeled over the ER domain, with
most values falling between 2 and 9 µmol m−2 s−1, consistent with the
range of the observed respirationmeasurements taken over the SGP97
Fig. 7. Maps of soil, canopy, and system carbon (µmol m−2 s−1) and latent heat flux (W m
temperature, TRAD (C), are also shown. Area demarcated in soil evaporation panel is expand
study area. The modeled respiration fluxes are highest in the well-
vegetated rangeland in the southeast quadrant of the domain, where
ESTAR detected enhanced soil moisture conditions. This area had
indeed obtained higher cumulative rainfall during SGP97 prior to DOY
183 (Jackson et al., 1999).

The modeled soil evaporation rate on DOY 183, four days after the
last rainfall event (on DOY 179), is generally low across the domain
(160 W m−2 on average). Based on the radiometric surface tempera-
ture data, however, DisALEXI_LUE identified a few wheat fields with
low NDVI in the central part of the domain that had surface tem-
peratures cool enough to require relatively high soil evaporation rates
(250–350 W m−2) to satisfy the surface energy balance. Fields A and B
highlighted in Fig. 8, for example, have a green vegetation cover fraction
similar to that in surrounding wheat fields (e.g., Field C in Fig. 8), but
considerably lower surface temperature (37 vs. 45 °C) and are therefore
diagnosed with higher soil evaporation (300 vs. 110 W m−2). The
enhanced evaporative flux in Fields A and B may be due to sheltering
effects of standing (unharvested) senesced wheat. While Field C (an
SGP97 sampling site: ER10)was known to be in harvestedwheat stubble
on DOY 193, Fields A and B appear to have been undergoing harvest at
the time of imaging. The field borders are spectrally similar to thewheat
stubble in Field C, while the interior areas interior resemble ARS fields
with mature but unharvested wheat. Such a patternwould be expected
during harvest, as field borders are typically harvested first to ac-
commodate the combine turning radius before the interior is harvested
crosswise. The standing senesced wheat inside Fields A and B would
not be reflected in the NDVI or green vegetation cover fraction, f(θ), but
would have the effect of reducing wind speed and net radiation at the
soil surface and therefore decreasing the rate of soil evaporation (see
−2) estimates from DisALEXI_LUE. Model input fields of NDVI and radiometric surface
ed in Fig. 8.



Fig. 8. Expanded view of region demarcated in Fig. 7, highlighting conditions inwheat fields diagnosed with low green vegetation cover and high soil evaporation rates (labeled A and
B). In contrast, the modeled evaporation rates are much lower in an adjacent field (C) with similar cover fraction. The difference in moisture conditions between these fields may be
related to residue cover amount.
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also French et al., 2000a). This is an example of the value of the
radiometric temperature inputs to the surface energy balance assess-
ment: ET models based solely on indices sensitive to green vegetation
cover (e.g., Szilagyi, 2002; Nagler et al., 2007) would detect little
difference in ET between Fields A, B and C.

From Fig. 7, it is clear that the system (soil+canopy) fluxes are less
well correlated with NDVI than are the canopy flux components. This
is because soil evaporation and respiration are tied to moisture
variability in the soil surface layer, which can vary strongly across the
landscape due to patchy rainfall and drying. In this case, modeled LE in
particular is not well predicted by NDVI alone (R2=0.64)— the thermal
data provide valuable additional information about the surface
moisture status and direct soil evaporation.

5.3. DisALEXI-aircraft comparisons

Kustas et al. (2006) described the methods used to integrate the
model surface fluxes along the ER transect for comparison with the
airborne flux profiles. In short, the analytical flux footprint analysis
technique of Schuepp et al. (1990, 1992), including a correction for
atmospheric stability, was applied to DisALEXI_LUE output flux fields
of A and LE. Footprint-weighted model fluxes were averaged over the
250m interval/flux windows used to generate the aircraft flux profiles
(Mahrt et al., 2001). Given the wind speed and stability conditions at
the time of the overpass, the peak of the footprint function is offset
~250 m to the SW (upwind) of the transect.
Footprint-weighted net carbon and latent heat flux and LAI from
DisALEXI_LUE are compared to the aircraftfluxprofiles in Fig. 9, showing
good spatial agreement as the aircraft transits from vegetated pasture
and riparian land in thewest, over a broad regionof lowvegetation cover
(harvested winter wheat) in the center part of the transect, and back to
denser green vegetation cover in the east. Net flux magnitudes are well
reproduced by the model (see statistical comparisons in Table 3). The
agreement with the latent heat flux profile is similar to that obtained
with DisALEXI_PT (Kustas et al., 2006).

In Fig. 9, the aircraft LE profiles are shown as measured and with a
constant bias correction that enforces closure on average over the
transect using both the residual and Bowen ratio methods, with the
available energy (RN–G) in both cases coming from the footprint-
weighted DisALEXI_LUE model output. Over most of the transect, the
modeled LE is in better agreement with the BR-corrected aircraft
fluxes (RMSD=35 W m−2) than with the residual correction
(RMSD=51 W m−2), contrary to the findings with the 2-m tower
fluxes discussed in Section 4.2. Given the measurement height, and
the fact that G was not measured by the aircraft, the appropriate
closure correction technique in this case is less clear. Kustas et al.
(2006) and Anderson et al. (2007) note evidence for a difference in
source area contributing to the H and LE fluxes measured by the
aircraft, with sensible heat tending to correlate better with land-
surface features in a swath directly under the aircraft flightpath, while
latent heat was well reproduced by the footprint model, sampling the
upwind fetch. Furthermore, some divergence in both H and LE is



Fig. 9. Variation, fromwest to east, in segmented fluxesmeasured by aircraft over the ER transect and footprint-weighted output from the DisALEXI_LUE model assuming rangeland/
pastures with mixed C3/C4 composition (lines with circles): a) latent heat flux (Wm−2), with unclosed aircraft EC fluxes (dashed line), and fluxes closed with the BR (thick line) and
residual (thin line) closure methods; b) Net Ecosystem Exchange (µmol m−2 s−1), with unclosed aircraft EC fluxes (thick line), and model output assuming rangeland/pasture with
pure C4 composition (dashed line); c) modeled LAI derived from NDVI imagery.
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expected between 2m and 35m, and therefore the residual correction
may be less appropriate at larger measurement heights. In general, LE
from DisALEXI_LUE lies between the residual-corrected and unclosed
fluxes, which may represent the bounds of uncertainty in the closure.

No closure correction was applied to the aircraft carbon flux
measurements shown in Fig. 9. The observed profile shows good
agreement (RMSD=2.3 µmol m−2 s−1) with the mixed landscape
simulation shown in Fig. 7, which assumes C3 parameter values for
areas classified as wheat and alfalfa, and a C3/C4 mixture in the
pasture and rangelands. In general, however, detailed information
about grassland canopy composition may not be available. The dashed
line in Fig. 8 demonstrates model sensitivity to the assumed com-
position, representing model results where the nominal LUE para-
meters for the rangeland/pasture class are assigned values associated
with C4 grasses (Table A3). In this case, net carbon flux would be
overestimated by 0.9 µmol m−2 s−1 (9% of the mean observed flux)
on average along the transect (Table 3). Note that differences in LE
generated under these two scenarios are very small, due in part to the
relative insensitivity of LE to the value of βn, and to the spatial
averaging effected by the footprint model.
Table 3
Quantitative measures of DisALEXI_LUE model performancea in reproducing flux
profiles measured over the aircraft transect

Flux N Ō MBE RMSD r2 E %
errorW m−2 W m−2 W m−2

LE (residualb; C3/C4c) 52 368 −40 51 0.68 0.18 11
LE (BRd; C3/C4) 52 340 −12 35 0.68 0.64 8
A (C3/C4) 52 10.5 −0.2 2.3 0.85 0.77 17
A (C4e) 52 10.5 0.9 2.9 0.86 0.61 23

a Statistics are defined as in Table 1.
b Residual closure of observed energy budget.
c Mixed C3/C4 canopy composition assumed for pasture/rangeland.
d Bowen ratio (BR) closure of observed energy budget.
e Pure C4 canopy composition assumed for pasture/rangeland.
5.4. Light-use efficiency mapping

The dominant driver of variability in the effective LUE predicted by
the DisALEXI_LUE model is land-cover class (C3 wheat vs. C3/C4 grass
mixture). For both classes, however, the derived canopy LUE (β) has
been decreased from the nominal class-specific values (βn) in
response to local atmospheric conditions and surface moisture
deduced from the TIR inputs. LUE for pixels classified as rangeland
was reduced from a nominal value of 0.025mol mol−1 to an average of
~0.022 in most parts of the domain, while LUE for wheat classes was
reduced from 0.020 to ~0.0165 mol mol−1 on average.

Fig. 10 maps the effective LUE (β) at 10:20 AM and the magnitude
of the change from its nominal value (Δβ=βn−β) diagnosed by the
analytical canopy resistance model in DisALEXI_LUE, focusing on the
high-cover rangeland/pasture area in the eastern half of the domain
(canopy light-use efficiency is ill-defined in areas of very low
vegetation cover, so these areas have been blanked). Light-use
efficiency is least modified in areas with lower surface radiometric
temperature — primarily along riparian waterways where it can be
assumed there is ample soil moisture supply. Using a coupled
photosynthesis-canopy resistance model, Tuzet et al. (2003) demon-
strated that in conditions of depleted rootzone moisture, where the
soil matrix is unable to keep up with the noon-time atmospheric
demand for water transpired by the canopy, a midday depression in
the diurnal stomatal conductance and LUE curves will form and
strengthen as the drying cycle progresses. In the ER landscape, midday
depression effects should be less pronounced in the well-watered
vegetation along the streambeds, as is predicted by the model.

6. Conclusions and future work

An analytical LUE-based model of bulk canopy resistance was
effectively integrated into the diagnostic Two-Source Energy Balance
(TSEB)model, enabling regional estimation of coupled carbon andwater
fluxes using thermal remote sensingdata. Replacing thePriestley–Taylor



Fig. 10. Model estimates of effective light-use efficiency (β) and modification from the
nominal class-dependent LUE value (Δβ), and surface radiometric temperaturemapped
over rangeland and riparian areas in the eastern part of the ER domain.

Equations of the TSEB_PT and TSEB_LUE models

Equation Description No.

TSEB_PT model
TRAD(θ)=[f(θ)TC4+[1− f(θ)]TS4]1/4 Two-source partitioning of TRAD at view

angle θ
(A1)

RN=H+LE+G System energy budget (A2)
RNS=HS+LES+G Soil component energy budget (A3)
RNC=HC+LEC Canopy component energy budget (A4)
RN=RNS+RNC System net radiation (A5)

H ¼ HS þ HC ¼ ρcp
TAC−TA
RA

System sensible heat (A6)

HS ¼ ρcp
TS−TAC
RS

Soil sensible heat (A7)

HC ¼ ρcp
TC−TAC
RX

Canopy sensible heat (A8)
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(PT) canopy transpiration module in the original TSEB (Norman et al.,
1995) with an LUE-based module resulted in improved partitioning of
the energy budget in comparison with tower observations collected
during SGP97, with a reduction in prediction errors from 15 to 9% for the
latent heat flux, and from 16 to 12% for all energy budget components
combined. The PT approach tended to overestimate latent heat over
well-vegetated rangeland sites, whereas the LUE module was able to
achieve appropriate reductions in canopy conductance in response to
elevated midday vapor pressure deficits.

When applied in mapping mode within the framework of the
DisALEXI model, the analytical canopy resistance submodel generated
spatial patterns in instantaneous surface carbon and latent heat fluxes
that agree well with airborne measurements along a flight transect
sampling rangeland, riparian areas, and harvestedwinter wheat fields.
Spatial variability in the canopy component assimilation and
transpiration fluxes correlate well with cover fraction and NDVI.
Correlations between NDVI and system fluxes of ET and NEE, however,
are degraded due to the soil flux components, which are tied strongly
to soil moisture variations. This demonstrates the value added by
the thermal remote sensing data, which carry information about
the surface moisture status. ET mapping methods based purely on
vegetation indices will miss transient variability due to enhanced soil
evaporation or vegetation stress.

The effective light-use efficiency, β, diagnosed by DisALEXI_LUE
responds to local anomalies in the relationship between surface
temperature and vegetation cover fraction. For a given cover fraction,
cooler surface temperature is interpreted to indicate higher transpira-
tion rate, and therefore higher canopy conductance and LUE. Future
analyses will compare spatial variability in β predicted with the
thermal-based DisALEXI_LUE with maps of LUE derived from short-
wave indices, such as the Photochemical Reflectance Index (PRI;
Drolet et al., 2008; Hall et al., 2008).

For comparison with airborne carbon flux observations, a simple
empirical model of heterotrophic soil respiration based on LAI, soil
moisture, and soil surface temperature (Eq. (4)) was used to convert
modeled canopy assimilation fluxes to net ecosystem exchange. In
mapping mode, soil moisture inputs were retrieved from L-band
microwave data, LAI from NDVI, and soil temperature from the TSEB.
However, passive microwave retrieval techniques are sensitive to soil
moisture in only the upper few cm of the soil profile and may tend to
underestimate the 0–10 cm moisture content (θ10) used in Eq. (4). For
future applications, the TSEB itself could be used to estimate θ10, using
functions based on the ratio of actual to potential evapotranspiration.
Anderson et al. (2007a) and Hain et al. (2008) demonstrated that
the TSEB reasonably reproduced spatial and temporal variability in
soil moisture observations averaged down to 100 cm depth, with the
component fluxes LES and LEC adding some ability to distinguish
between surface layer and root zone moisture.

For mapping applications with ALEXI at the continental scale, the
challengewill be to obtain vapor pressure boundaryconditions that are
compatible with the surface radiometric temperature data — biases
between these inputs have the potential to corrupt the partitioning of
the energy budget. One possible approach is to use the saturation
vapor pressure at the temperature of the land-surface as an indicator of
the local vapor pressure deficit (Hashimoto et al., 2008). If a suitable
vapor pressure data source can be identified, the ALEXI/DisALEXI
system can facilitate nested mapping of carbon and water fluxes at
local to continental scales, providing spatial context for interpreting
and upscaling tower and aircraft flux and flask data collected over
heterogeneous landscapes.
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Table A1



Table A1 (continued)

Equation Description No.

TSEB_PT model

LE=LES+LEC System latent heat (A9)

LEC ¼ αCfg
Δ

Δþ γp
RNC Initial estimate of canopy transpiration

(TSEB_PT)
(A10)

G=αgRNS Soil conduction heat (A11)

Analytical canopy resistance model in TSEB_LUE

LEC ¼ λ
e⁎ TCð Þ−eAC
P RC þ RBð Þ Canopy transpiration (TSEB_LUE) (A12)

LEC ¼ λ
e⁎ TCð Þ−eB

PRC
¼ λ

e⁎ TCð Þ 1−RHB½ �
PRC

Canopy transpiration (TSEB_LUE) (A13)

AC ¼ CA−Ci

1:6RC þ 1:3RB þ RA;μm
� � Canopy assimilation (A14)

AC ¼ CA−CB

1:3RB þ RA;μm
� � Canopy assimilation (A15)

Rb=(fs/[ fg× fdry])Rx,µm Bulk leaf boundary layer resistance
governing transpiration and assimilation

(A16)

1
RC

¼ bC þm
ACRHB

CB

Ball et al. (1986) equation for stomatal
resistance, scaled to canopy level

(A17)

bc=b×F× fdry× fg Upscaling of Ball et al. b parameter to
canopy level

(A18)

AC=β(γ)APAR Canopy assimilation — LUE relationship (A19)
γ=Ci/CA Intercellular-ambient CO2 ratio (variable) (A20)

β γð Þ ¼ βn

γn−γ0ð Þ γ−γ0ð Þ Linear function modifying the nominal
LUE (βn) in response to modeled Ci/CA

(A21)

Table A2
Model variables and parameters

Symbol Units Description

TSEB_PT model
α – Reflectivity of soil-canopy system
αC – Priestley–Taylor coefficient for canopy transpiration

(initial value of 1.3)
αg – Soil heat flux coefficient (0.3)
Δ kPa K−1 Slope of saturation vapor pressure vs. temperature curve
F – Leaf area index
f(θ) – Fractional vegetation cover at view angle θ
fg – Fraction of green vegetation
G W m−2 Soil heat flux
γp kPa K−1 Psychrometer constant
H W m−2 System sensible heat flux
HC W m−2 Canopy sensible heat flux
HS W m−2 Soil sensible heat flux
λ J kg−1 Latent heat of vaporization
λE W m−2 System latent heat flux
λEC W m−2 Canopy transpiration
λES W m−2 Soil evaporation
θ deg TIR sensor view angle from nadir
RA s m−1 Aerodynamic resistance for momentum
Rx s m−1 Bulk two-sided leaf boundary layer resistance
RS s m−1 Soil boundary layer resistance
RN W m−2 Net radiation above canopya

RNC W m−2 Net radiation divergence within canopya

RNS W m−2 Net radiation above soil surfacea

ρcp J K−1 m−3 Volumetric heat capacity of air
TAC K Aerodynamic temperature
TC K Canopy temperature
TS K Soil surface temperature
TRAD(θ) K Surface radiometric temperature at view angle θ

Analytical canopy resistance model
AC µmol m−2 s−1 Canopy assimilation rate (positive downward)
APAR µmol m−2 s−1 Absorbed photosynthetically active radiation
b µmol m−2 s−1 Ball et al. (1986) offset parameter (leaf scale)
bC µmol m−2 s−1 b scaled to canopy level
βn mol CO2 mol−1 APAR Nominal unstressed canopy LUE (model input)
β mol CO2 mol−1 APAR Effective canopy LUE, including stress response

(model output)
CA mol CO2 mol−1 air Ambient CO2 concentration
CB mol CO2 mol−1 air CO2 concentration in the leaf boundary layer
Ci mol CO2 mol−1 air Substomatal CO2 concentration
e⁎ (TC) kPa Saturation vapor pressure at canopy temperature
eA kPa Ambient vapor pressure
eAC kPa In-canopy vapor pressure

(continued on next page)

Table A2 (continued)

Symbol Units Description

fdry – Dry vegetation fraction
fs – Stomatal distribution correction factor
γ – Ratio of intercellular to ambient CO2 concentrations

(Ci/CA)
γn – Nominal value of γ
γ0 – Value of Ci/CA at β=0
λ J µmol−1 Latent heat of vaporization
m – Ball et al. (1986) slope parameter
P kPa Atmospheric pressure
RA,µm m2 s μmol−1 Aerodynamic resistance for momentum
RB m2 s μmol−1 Bulk leaf boundary resistance, corrected for stomatal

distribution and dry green leaf area
RC m2 s μmol−1 Bulk canopy resistance
Rx,µm m2 s μmol−1 Bulk two-sided leaf boundary layer resistance
RHB – Relative humidity inside the leaf boundary layer

Soil respiration model and Net Ecosystem Exchange (NEE)
A µmol m−2 s−1 Net Ecosystem Exchange (A=AC−AS; positive downward)
AS µmol m−2 s−1 Soil respiration rate (positive upward)
D m Thermal damping depth
Td K Climatological deep soil temperature
T(z) K Temperature at depth z (m)

aSee App. B in Anderson et al. (2000) for equations for RN, RNS and RNC.

Analytical canopy resistance model

Table A3
Canopy resistance model parameter values

Quantity Symbol Units C4 grass C3 grass C3/C4

Nominal LUE βn mol mol−1 0.03 0.02 0.025
Nominal Ci/CA ratio γn mol mol−1 0.6 0.8 0.7
Ci/CA at β=0 γ0 mol mol−1 0.0 0.2 0.1
Ball & Berry slope m 4.0 9.0 6.5
Ball & Berry offset b µmol m−2 s−1 0.04×106 0.01×106 0.025×106
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