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Abstract Information regarding tree water status in irrigated olive orchards is essential for

managing growth to optimize yields and olive oil quality. One management practice option

is to monitor or sample individual trees and use this information for orchard-scale man-

agement. This study assessed the ability of thermal imaging to provide the spatial distri-

bution and variability of tree water status in a commercial irrigated olive orchard, and

described strategies and a procedure for choosing which individual trees best represent the

orchard. The study employed gradual upscaling from individual trees grown in lysimeters,

through a controlled experimental field plot, to a commercial orchard. Thermal imaging of

olive trees grown in lysimeters attested the sensitivity of the technique to identify mild-level

water stress by correlating crown temperatures to stem water potential. Knowledgeable

choice of five or ten representative trees in the experimental plot, based on the histogram

distribution obtained for the entire experimental orchard, lead to successful reconstruction
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of the spatial distribution of canopy temperature, and thus of water status. Positively skewed

distributions of crown temperatures found in both the field plot and commercial orchard

suggested distinct patterns, where the canopy temperature of the majority of the trees was

lower than the average, and a relatively small number of trees had significantly higher

temperatures and suggest commercial practicality of the proposed methodology. Thermal

imaging can therefore serve as a useful tool for determining representative trees that, if

frequently monitored, or instrumented with continuous water status sensors, can provide

important information for orchard water management.

Keywords Crop water stress index � Transpiring canopy area � Lysimeters �
Geospatial analysis � Sampling strategies

Introduction

Over the last few decades, irrigation has been shown to positively affect olive (Olea

europaea) oil yield (Gómez-Rico et al. 2006; Ben-Gal et al. 2011). This accelerated the

transition of the olive oil industry from traditional rain-fed to intensively-managed irrigated

orchards (Lavee 2011). However, while fruit and oil yield have been reported to be posi-

tively affected by increasing the amount of water applied, oil quality parameters, such as

polyphenol concentration and free fatty acid content, were reported to be negatively

affected (Gómez-Rico et al. 2006; Dag et al. 2008; Ben-Gal et al. 2011). Optimization of

olive oil quality and quantity can be achieved by water management that allows conditions

of mild stress during pit hardening and induces stress during the oil accumulation stage,

particularly prior to harvest. Similarly, control of water stress conditions is required in high-

density olive orchards where deficit irrigation is used to moderate vegetative growth and

maintain a manageable canopy size (Lavee 2011; Naor et al. 2013). Monitoring and control

of olive orchard water status is therefore becoming increasingly important. Scarcity of fresh

water in the Mediterranean region, where olive oil production is concentrated (Vossen

2007), further heightens the need for improved water use efficiency (Ben-Gal et al. 2006).

Best management concerning water in orchards could potentially be achieved if water

status of each individual tree at any given time was known. For economic reasons, this is

impractical. A near optimal approach would provide continuous water status information

for representative trees. Continuous water status measurement techniques e.g. dendrome-

ters (Reineke 1932 and thereafter) or leaf turgor pressure probes (Zimmermann et al.

2008), are nowadays available at costs reasonable enough to instrument a limited number

of trees. The open question is how to choose the representative trees.

Tree water status is a function of environmental conditions (climate, soil water status) and

plant parameters (variety, canopy size, fruit load), and as such, can be affected by cultivation

practices (tillage, weeds, irrigation method and quantity, irrigation water quality) and

external biotic stress causing agents (diseases, pests). Tree water status can be evaluated by

direct (e.g. stem or leaf water potential) and indirect (e.g. stomatal conductance, trunk

diameter, leaf thickness) methods (Ben-Gal et al. 2009). Yet, when such information is

required for the entire orchard (or a representative sample), preferably simultaneously,

employing these traditional methods is not feasible due to their time and labor intensive

nature, as well as due to the variability inherent to results derived from changes in climate

conditions during the measurement. Naor et al. (2006) found that a representative sample of

4–8 trees of a population of 27–30 trees was required for stable average readings of stem
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water potential (SWP) in apple, nectarine and pear orchards, indicating that numerous

measurements are required to evaluate the average of entire orchards.

To overcome these limitations, alternative methods that have the ability to provide

instantaneous, spatially distributed, information are desirable. The canopy temperature of

single trees can be determined using thermal imaging, provided that the spatial resolution

of the acquired images is adequate (Berni et al. 2009), and has been proven reliable for

measuring water status of oil olive trees (Sepulcre-Canto et al. 2006, 2009; Ben-Gal et al.

2009). However, the applicability of the technique for olive trees was tested mainly on two

extreme water status conditions, i.e. acute water stress versus well watered trees, but not

for the mild levels of water stress expected to be desirable for production of high quality

oil. The first objective of this study was therefore to test the sensitivity of the thermal

imaging technique to identify mild level water stress in oil olive trees.

Thermal imaging provides the crown temperature, and thus the water status, of each of

the trees within the scene. However, for practical water management applications, thermal

images at spatial resolution that allows identification of individual trees are required at high

temporal resolution (i.e. 1–2 days). As yet, such information is unavailable. Alternatively,

the spatially distributed temperature field, based on data regarding each individual tree

within an orchard, can be used in combination with geographical information systems

(GIS) to provide the framework required for applying spatial analysis (e.g. Bellvert et al.

2012). Such spatial statistical information can be utilized to characterize the properties of

the orchard and identify representative trees. These trees can be repeatedly sampled,

measured or monitored with instrumentation including continuous water status sensors to

provide representative information regarding the orchard water status to managers.

An important and powerful spatial analysis method is spatial interpolation, which, based

on a set of limited sample points, computes values for an entire surface. This enables mod-

eling of the spatial distribution of a phenomenon at locations where no sampling is available

(Lloyd 2010). Together with the interpolation information, descriptive a-spatial statistics (i.e.

using the spatially distributed data without consideration of the specific location of the values)

provide a summary of the distribution. The frequency histogram is a statistic summarizing the

distribution of a dataset providing its minimum, maximum, mean, median and skewness.

Combined with GIS methodology, which can locate the trees that are associated with certain

data values in the database on a map, a histogram-based method can be used in order to

connect between the a-spatial distribution of the data values and their spatial distribution.

Choice of the representative trees, selected from the histogram, depends on criteria most

important to the farmer. If information on the overall status of the orchard is sought, indi-

vidual trees will be selected to represent the entire histogram distribution (an overall distri-

bution strategy). If there is need to assess the water status of the median values (neglecting the

edges of the histogram), selection of trees will focus on the median area of the distribution (a

median based strategy). Lastly, if the driest and wettest trees are of interest, monitored trees

will be selected from the tails of the distribution (a tails based strategy).

The potential of utilizing sporadically available spatially distributed information for

each tree in the orchard to choose the representative trees that, when frequently measured,

will provide the representative water status of the entire orchard is presented.

Materials and methods

Three experimental sites, representing different spatial scales, were employed in this study:

a collection of single tree lysimeters, an experimental field plot, and a commercial orchard.
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The fully automated weighing-drainage lysimeters allowed closure of water mass balance

of individual trees and served as a base for comparison with thermal imaging. Canopy

temperature distribution was determined in the experimental field plot using images of

groups of trees and in the commercial orchard using a single aerial image. Results from

both were evaluated as potential management tools.

Lysimeters

Single 2-year old (cv. Barnea) olive trees were planted in fifteen 2.5 m3 volume free-

standing weighing lysimeters at the Gilat Research Center in the northwestern Negev,

Israel (31�200N, 34�400E) in June 2008. A full description of the lysimeters is detailed in

Ben-Gal et al. (2010). The lysimeters facilitated calculation of daily actual water con-

sumption according to ET ¼ I� D� DW; where ET is evapotranspiration; I is irrigation;

D is drainage and DW is change in soil water. The units of all water balance components

were mass (kg) and easily convertible to volume (L). There was no rainfall during the

experimental period (July–August 2010). The trees were irrigated daily, with quantities

always exceeding (by *20 %) the previous day’s ET rates as calculated from the weight

data of the lysimeters (ETa). A nearby weather station provided daily reference ET, (ETo)

(FAO Penman-Monteith; Allen et al. 1998). On 9 August 2010, gradual mild water stress

was applied to the trees by ceasing irrigation for three consecutive days to deplete plant

available water in the soil profile. Thereafter, water application was set to 90 % of the

previous day’s ETo multiplied by a factor empirically derived for the least transpiring tree,

so that all trees received the same amount of water. The factor was a 3-day average ratio of

measured daily ETa/ETo, termed as the effective transpiring canopy area (ETCA; Ben-Gal

et al. 2010). The units of ETCA are m2 of canopy, resulting from dividing volume (m3 of

ETa) by length (m of ETo). To further evaluate and understand the ETCA and its relevance

to trees in orchards, it was compared to tree canopy volume estimated by tree upper

transect, calculated from the RGB images, multiplied by measured tree height. The dif-

ferent ETCA under uniform deficit irrigation, and therefore uniform uptake amounts,

resulted in varying stress levels, represented by the difference in ETCA between the initial

conditions before stress was applied and the conditions during thermal imaging after

moderate stress had been developed (Fig. 1). The deficit irrigation ranged between 90 and

45 % of each tree’s expected potential daily uptake if sufficient water had been available.

Thermal imaging was carried out 4 days after the 90 % ETo irrigation was initiated.

Thermal images of tree crowns were acquired on 19 August 2010 at 13:30, the time at

which the foliage exhibited the highest temperature of the day (Ben-Gal et al. 2010) with

an uncooled infrared thermal camera. The camera (ThermaCAM model SC2000, FLIR

Systems, Meer, Belgium) has a 320 9 240 pixel microbolometer sensor, sensitive in the

spectral range 7.5–13 nm, and a lens with an angular field of view of 24�. The thermal

camera, together with an RGB camera looking at the same target and shooting simulta-

neously, was mounted on a truck-crane about 30-m above surface. The canopy height was

*5 m, so that the linear field of view of the thermal camera at the canopy level was

11 9 11 m, with spatial resolution of 3.3 cm. This resolution enabled discrimination

between leaves and soil and selection of pixels that contained sunlit leaves. Crown tem-

peratures were assessed based on an area that included canopy only, excluding the canopy

edge, where the pixel was a mixture of leaves and soil surface. Thermal images were

processed with digital image processing tools using ThermaCamExplorer software (FLIR

Systems, Sweden) and Adobe Photoshop 7.0 software (Adobe Inc.). Simultaneously, SWP

was assessed using a Scholander-type pressure chamber (M. R. C. Arimad, Personal

Precision Agric (2014) 15:346–359 349

123



Communication Holon, Israel) according to Gucci et al. (1997) on single west-facing

shoulder height stems with five to seven new growth leaves that had been covered prior to

07:00 h on the day of measurements. Three stems were measured from each tree between

12:00 and 13:30 h.

Experimental field plot and commercial orchard

In the experimental field plot, thermal images of 86 tree crowns were taken from above a

0.2 ha mature non-bearing olive orchard (cv. Leccino), located nearby the lysimeter field,

between 11:30 and 12:45 h on 7 October 2010 with the same thermal camera. A week prior

to imaging, mild water stress was applied to the orchard by adjusting the irrigation amounts

to obtain average SWP values of -0.2 MPa. The imaging setup was similar to the one

described in the lysimeters study. Four overall images, encompassing 22 tree crowns each,

were taken from 32-m above ground. The imaging procedure spanned over an hour, during

which changes in environmental conditions were evident.

As temporal changes in environmental conditions (mainly solar radiation, wind speed, air

temperature and humidity) affect crown temperature, acquisition of thermal imagery of an

orchard is suggested to be performed in a single shot. Otherwise, canopy temperature should

be normalized to account for these changes. Normalizing the actual crown temperatures to

high- and low-boundaries, and calculating the crop water stress index (CWSI) is an estab-

lished way to account for changes in atmospheric conditions (CWSI; Idso et al. 1981; Jackson

et al. 1981, 1988; Jones 1992, 1999). The canopy temperature was accordingly normalized to

an empirical CWSI (Irmak et al. 2000; Ben-Gal et al. 2009), such that

CWSI ¼ TC � Twet

Tdry � Twet

ð1Þ

in which Twet is the temperature of a leaf transpiring at the maximum potential rate and Tdry

is the temperature of a non-transpiring leaf. According to the empirical approach (Cohen

et al. 2005; Grant et al. 2007; Moller et al. 2007), Tdry was set to 5 �C greater than air

temperature (Jackson 1982), and Twet was determined based on measurements of a wet

artificial reference surface captured by the thermal image. The TC was defined as the

average crown temperature of each individual tree.
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Computation of the CWSI required continuous measurements of meteorological

information. Global radiation, wind speed, air temperature and relative humidity were

measured at 2-m above ground by a meteorological station positioned in an open field

*50 m from the field plot. The sampling rate was 0.1 Hz, and 1-min averages were

recorded by a data acquisition system (CR10X, Campbell Scientific Inc., UT, USA). SWP

was assessed for ten trees chosen randomly from five blocks representing different zones in

the field plot, using the procedure described above.

In order to visually examine how well the selected trees reproduce the spatial variability

of crown temperature in the orchard, a spatial interpolation method was applied. Note that

spatial interpolation is generally applied to continuous (not discrete) data. While the

temperature associated with the tree crowns represents a continuous phenomenon, the tree

crowns do not cover the entire surface, and thus may be referred to as discrete data in terms

of their spatial extent. The interpolation was nevertheless performed on the crown tem-

perature, and the results represent the spatial variation as if the tree crowns would have

covered the entire area. Since the soil background was of no relevance, in this case, and

interpolations were not used in order to simulate or extract values in un-sampled locations,

the approach was considered to be valid.

An inverse distance weighted (IDW) interpolation method was used to represent the spatial

variability in CWSI values, applying a power of two to the weighing function. It was selected

over alternative methods due to its suitability for cases of sufficient and evenly distributed data

in reference to spatial variation (Lloyd 2010) and since, among the tested options, it performed

best [lowest root mean square error (RMSE)]. A histogram built from the mean crown tem-

perature of each of the 86 trees was built, based on which several strategies for data sampling

were examined to optimize the locations for sampling or deployment of water status sensors.

Each strategy was evaluated for five and ten samples and the selected samples (individual trees)

were examined in their spatial context to assess their ability to represent the spatial variability in

orchard crown temperatures. For each sampling strategy, selection of samples was done using

the querying capabilities of the GIS system. For example, in the tails-based strategy, since only

two trees meet the criteria of being the tails (min and max values), additional trees were selected

based on the threshold defined by the number of sensors, i.e. the five or ten highest and lowest

values. The same process was applied to the median value, by selecting the five or ten trees with

data values that are closest to the median.

Interpolations were evaluated for their spatial accuracy by visually comparing the

interpolations to the original 86 sample interpolation and by computing the RMSE of the

interpolations. The RMSE was calculated by comparing between the values extracted from

the interpolations at each of the 86 tree locations and the measured CWSI values.

In a 13 ha commercial orchard of mature olive (cv. Barnea) trees, located near Reva-

dim, Israel (centered at 31�4405500N 34�5100500E) airborne thermal images were taken at

13:00 on 29 August 2010 using the same thermal camera. Crown temperature of two

sections of adjacent 500 trees (total 1 000 trees), representative of the orchard, were used

to generate crown temperature histograms.

Results and discussion

Canopy temperature as a detector of water status

Quantification of ETa, ETo and their derivation, ETCA, was facilitated by the lysimeters

and the onsite weather station. The ETCA, prior to the experiment when water was not
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limiting to the trees, strongly corresponded with canopy volume determined by multiplying

cross sectional cover by tree height (Fig. 2). Tree volumes ranged from less than 20 to

more than 45 m3 while ETCA ranged from 13 to almost 23 m2. In spite of the fact that the

trees in the lysimeters were at the same physiological phase and exposed to similar

environmental conditions, they varied significantly in canopy size and tree-scale water

consumption. This variability cannot be explained by climate, soil type, pest control, tree

variety, fruit load or water application management, as these were all uniform throughout

the three year growing period of the trees. Therefore, natural biological variability, micro

conditions due to relative placement, and possible variability in pruning, were assumed to

be the operative parameters leading to canopy size differences and tree water uptake.

Following reduction of irrigation for all trees according to 90 % of the smallest (least

uptake under optimum conditions) tree, uptake became equivalent to water applied and

ETCA was similar for all the trees (Fig. 1). At this point, the differences in tree volume

were expected to produce varied stress levels between the trees, with larger trees experi-

encing relatively greater stress. To evaluate this and to further assess that tree size was the

dominant reason for differences in water uptake, direct measurements of SWP, considered

as a bench mark of water status measure in trees (Jones 2007), were plotted against the pre-

stress ETCA (Fig. 3a). A significant positive correlation was observed (r2 = 0.65,

P \ 0.001). The scattering of data was attributed to the temporal changes in atmospheric

conditions during the SWP measurements: solar radiation decreased continually from 900

to 650 W m-2, and wind speed fluctuated between 4.5 and 6.5 m s-1. The SWP ranging

from -1.1 to -1.6 MPa (Fig. 3a) is considered high and representative of fairly well

watered olive trees. Ben-Gal et al. (2009) showed a range from -2.0 to -4.0 MPa for well

watered to severely deficit irrigated cv. Barnea olive trees, measured in September. In a

separate study in the same lysimeters, baseline midday SWP was around -1.2 to

-1.4 MPa and decreased to less than -3.0 MPa under extreme drought stress (Ben-Gal

et al. 2010). Similar to SWP, crown temperatures were related to ETCA (Fig. 3b,

r2 = 0.64, P \ 0.001), with a range of around 2 �C, demonstrating the ability of the

thermal imaging technique to identify mild variations in water stress in olive oil trees.

Water status distribution

Histograms of CWSI and of canopy temperature for the tree population in the field plot and

the two 500-tree sections of the commercial orchard, respectively, are presented in Fig. 4.
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The positive skewness of all three distributions indicates a longer tail to the right side with

a median left of the mean (Shapiro–Wilk probabilities in all distributions \0.05). This

means that the canopy temperature of the majority of the trees is lower than the average,

and that some trees have a temperature significantly higher than the others, stretching the

histogram to the right.

Higher temperatures in individual trees or specific areas of the orchard, indicative of

stress conditions, are a result of: under-application of water due to local malfunctioning of

irrigation system; partial pruning; boundary effects (climatic or biotic stresses); lower soil

water holding capacity due to shallower or lighter textured soil; or high fruit load. In

contrast, trees with cooler canopy temperatures may indicate over-application of water due

to local malfunctioning of irrigation system, over-pruning, or higher soil water holding

capacity due to deeper or finer textured soil.

Based on these relationships, geospatial analysis of the thermal images can specify the

location of trees representing the variability of water status of the entire orchard, which can

then be monitored manually or by continuous water status sensors. This can allow confi-

dent quantification of the average water status of the entire orchard, providing high fre-

quency, reliable information on tree water status distribution and irrigation requirement.

Alternatively, this could facilitate selection of zones (and representative trees for moni-

toring within the zones) for precision orchard management. In either case, robust,
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confident, representative sampling or sensors providing continuous data are expected to

facilitate practical decisions regarding adjustment of water and/or fertilizer application,

soil amendments for improved water holding capacity of soil, pruning and harvesting.

Geospatial analysis—choosing the representative trees

The spatial variability in CWSI values of the trees in the experimental field plot (Fig. 5)

indicates two major CWSI zones of higher (at the southern part of the experimental field)
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and lower (the northern part of the field) values. This pattern was assessed by the GIS-

based IDW method for spatial interpolation performed using values of every individual

tree (Fig. 6a).

When it is impractical to obtain thermal images of the entire orchard in a frequency

relevant to monitoring water status (1–2 days), periodic spatial information can be

employed to choose representative trees for manual or continuous monitoring. Choice of

the representative trees can be made based on criteria most important to the farmer, i.e. the

overall distribution strategy, the median based strategy, or the tails based strategy.

The number of sensors needed to represent the histogram is an important question not

dealt with in this current study. However, we can generally assume that the larger the

number of sensors the better, and that final choice of number will be determined by the

sensors’ cost relative to the value of expected changes in yield. In this study, each of the

three strategies was examined for choosing either five or ten sensor locations. In the overall

distribution strategy, the five sample set was based on the values which best summarized

the data distribution, i.e. the minimum, maximum, median, 1st quartile and 3rd quartile

values. For the ten sample set additional values were selected which represented the overall
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distribution. Selected samples are highlighted on the histogram of the 86 sample distri-

bution (Fig. 7a, d for the ten and five sampled trees, respectively). In the median based

strategy, the sampled trees were chosen from the median range (Fig. 7b, e), and in the tails

based strategy sampling was selected from the tails of the distribution (Fig. 7c, f).

To evaluate the sampling method spatially and to assess how well spatial variation was

represented, the ten-sample sets were interpolated using an IDW method (Fig. 6b–d) and

results were compared with the original 86 sample interpolation (Fig. 6a). Five samples

were not sufficient for creating a meaningful and reliable interpolation therefore interpo-

lation was not performed. The five locations chosen based on the three methods are

overlaid on the ten-location interpolations (Fig. 6b–d). The spatial variability of the

interpolation of the ten sample set based on the overall distribution (Fig. 6b) most

resembled the spatial variability of the interpolation for all 86-trees (Fig. 6a)

(RMSE = 0.036). The tails based interpolation (Fig. 6d) also followed a spatial distribu-

tion pattern similar to the one exhibited in the interpolation of the 86 samples, albeit to a

lesser extent (RMSE = 0.051). The median based interpolation (Fig. 6c), where repre-

sentative trees were chosen from the narrow range in CWSI values around the median,

resulted in the lowest accuracy (RMSE = 0.062) with all values falling within the same

category, thus, in this case, providing no additional spatial information. Note that although

RMSE values for all interpolations were small, due to the narrow data range, the RMSE of

the overall based interpolation was about half of the RMSE of the median based inter-

polation. It is not surprising that the overall based interpolation resulted in spatial patterns

most closely resembling the actual spatial distribution of an orchard. The other two

methods (tails based and median based) are presented here to show the flexibility of the
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proposed method to provide interpolations that will best reflect a farm manager’s interest

and needs.

The proposed histogram-based sampling method provides a simple and fast decision-

support tool to spatially recognize the location and distribution of trees based on their

specific water status. In addition, it provides a method to select which condition of trees to

concentrate on and monitor: whether the extreme cases, the most frequent cases or the

cases which best represent the overall data distribution in terms of orchard water status.

Using this tool, thermal images of the orchard may be taken once to several times

throughout the year, from which the representative trees for monitoring are chosen. The

number and timing of thermal image acquisition should be studied to test the temporal

variability of the spatially distributed histogram (i.e. to test the extent of the representa-

tiveness of the selected trees).

Conclusions

We have demonstrated that mild water stress can be identified and quantified by thermal

images. We have further shown that data from remote thermal imaging can aid selection of

trees for sampling or of placement of continuous water status sensors. The number of

monitored trees needed to well represent an orchard will depend on orchard size and

variability but will be significantly less than if placed randomly. Sensor placement will

vary depending on the manager’s objective: to best represent the entire orchard or to

advance precision horticulture by spatially representing the orchard’s variability. In either

case, the technology and methods are expected to promote olive orchard profitability and to

conserve water and other resources.
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